

⚠ Need to know

⚠ Given, no info

• Given

LECTURE 1: INTRODUCTION

- > **Planetary Exploration** focuses on objects in the Solar System, and explores links to planet formation and exoplanets
- ↳ Emphasis on science, influence on mission requirements, and generating new knowledge
- ↳ Done by studying structure, environment, surface characteristics and dynamics
- ↳ Use of simulations and data (in-situ or remote)

Spacecraft Classification

① Flyby Missions

- > Used in initial reconnaissance phase of an object
- > Observe targets as they pass by them
- ↳ Optical instruments need to pan to compensate for motion
- ↳ Observations are planned ahead of time

► Mercury is hard to orbit, first flyby by Mariner 10, first orbit by MESSENGER

- ↳ Smallest innermost planet, 2:3 Sun:axis spin-orbit resonance
- ↳ Surface has: ① **Scars or rupes** (steep slopes/long cliffs from faults or erosion)
② **Thrust faults** (breaks in crust, pushing younger rock up)
↳ Reveal global shrinkage of planet (radial: 7 km)

► Triton (Neptune's largest moon), only visited by Voyager 2

- ↳ Thought to be a dwarf planet from Kuiper belt due to retrograde motion and similarity to Pluto

- ↳ Has: ① **Nitrogen geysers** and **cryovolcanism** forming icy volcanic flows
② Young surface age, possibly from additional heat sources
③ **Cantaloupe terrain** due to overturning of icy crust

► Plutos orbit is noticeably inclined to the ecliptic plane, and has 5 moons

- ↳ Flyby by New Horizons in 2015
- ↳ Has: ① **Rocky core**
② **Water-ice mountains**

- ③ Surface of nitrogen ice
- ④ Traces of methane and carbon dioxide
- ⑤ Red color from tholins (polymer)

- ↳ Many processes:
 - ① Cryovolcanism
 - ② Wind-related
 - ③ Nitrogen glaciers

- ↳ Once had such high atmospheric pressure that nitrogen eroded river patterns
- ↳ We can compare seen surface features with those on Earth

② Orbiters

- ↳ Second phase of SS exploration, in-depth study of object

- ↳ Requires propulsion to enter orbit, resistance to frequent solar and Earth occultation (power/thermal/comms limits)

- ↳ Venus has a dense atmosphere with high CO₂ content, creating a surface temperature of 735 K

- ↳ Surface studies done using radar and IR windows

- ↳ Surface has:
 - ① Volcanic features
 - ② Possibly active volcanism

- ↳ The atmosphere and resurfacing erased water records

- ↳ Old water loss caused a rigid crust, preventing tectonics

- ↳ ESA Envision and NASA VERITAS upcoming missions

- ↳ Saturn has a rock/iron core, pale yellow due to ammonia crystals in the atmosphere, and a density less than water

- ↳ Rings consist of boulders to dust particles

- ↳ Flybys by Pioneers 11, Voyagers 1 and 2, orbited by Cassini

- ↳ Propeller structures are found in the rings caused by small moonlets

- ↳ Titan's density suggests half ice, half rock

- ↳ Atmosphere of methane

- ↳ Landed on by Huygens, revealed a wet sand-like surface

③ Atmospheric Probes

- ↳ Relatively short missions for atmospheric data

↳ No propulsion / ACS required

↳ Does require EPS / TT&C

> Measurements : ① Composition
② Temperature
③ Pressure
④ Density
⑤ Cloud composition
⑥ Lightning

↳ Pioneer missions on Venus saw no convection between 10-50 km

↳ Below 50 km, temperatures are very similar

↳ Below 30 km, atmosphere quite clear

↳ Galileo's entry probe returned data for ~1 hour, indicating :

① Intense radiation belt 50k km above Jupiter clouds
② High velocity winds (up to 640 m/s)
③ Less lightning
④ Fewer organic compounds
⑤ Less water vapor
⑥ Half the helium expected

④ Landed Missions

> Designed to reach the surface and transmit data

↳ Complementary to orbiters

↳ Risky and expensive for great science

↳ Venera landed on Venus (11/13 successful)

↳ Unique instruments : ① Microphone
② Atmospheric properties
③ Rock drill
④ Penetrometer

↳ Findings : ① Surface mainly volcanic rocks

② Flat layered rocks, indicating cycles of air fall or ground flow

③ Strength less than basalt

④ Internal radioisogenic heating similar to Earth

↳ MASCOT lands on asteroids to measure physical properties and imaging

⑤ Rovers & Aerial Drones

> Subclass of landed missions, able to move over the surface

↳ Able to move to points of interest

↳ Requires autonomy due to delay of commands

↳ Close-up imaging, sampling, sampling return

↳ Mars is much smaller than expected from formation models

↳ Spaceflight mapped surface features such as volcanoes, polar ice caps, flowing water, clastic and chemical sediment, dunes, and CO₂ driven processes

↳ Many rovers have traveled across Mars

↳ Dragonfly is a mission designed to fly on Titan as an analogue for early Earth environment

↳ Flying ideal due to dense, calm atmosphere with low gravity

The Bigger Picture

> Exploration has given an understanding how planets are shaped by geology

> A Venn-diagram can show overlapping features between various types

↳ No body contains all features

↳ Unifying hallmark is geological complexity

> The definition of a planet is an ongoing debate (e.g. Pluto)

LECTURE 2: METEORITES

> Asteroids are remnants of the SS formation phase

> Furthermore: ① Meteoroid: in space, $30 \mu\text{m} - 1 \text{ m}$

② Dust: in space, $< 30 \mu\text{m}$

③ Meteor: light from high speed reentry

④ Meteorite: object that survived Meteor phase

> Fireballs are created due to ablating by heating from shock front

↳ Stony objects: fusion crust

↳ iron objects: regmaglypts

↳ Survival depends on material mass, initial speed, and angle

↳ Generally $> 90\%$ of mass is lost during luminous phase

↳ If flight is aerodynamically stable, ablation happens in an even manner

> Camera networks such as DOERAK exist to detect and locate meteorites

> Asteroids observed before entry are imminent impactors

> The pressure of the atmosphere on a meteoroid:

$$\text{↳ } P = \frac{1}{2} C_D \rho g V^2$$

!

↳ Fracture if $P > \sigma_{\text{mar}}$. If during luminous phase, a secondary fusion crust is created. If during dark flight, not, and fracture is visible

> Dark flight trajectory is influenced by winds and aerodynamic properties

> The strewn field is the area where fragments end up

> Recovery can happen anywhere, but there are hotspots in Antarctica due to natural ice flow which embeds the fragments, and Chile due to low geomorphic activity

> Recovered: ① 5% iron

② 1% stony-iron

③ 94% stony

↳ However, composition and features allow for much more detailed classification

↳ This is in relation to the parent body

↳ Achondrites come from differentiated bodies, irons from a core, stony-irons from the transition layer, and chondrites from primitive or metamorphosed asteroids

> Irongs show Windmannstätten pattern

↳ Classification based on composition and structure

> Stony are classified using mineralogy and petrology

> Spectroscopy can be used to find the composition of asteroids, and the spectrum is unique for Vesta

Impacts

> Cosmic impacts are collisions of a moving object with a target surface

> The impact cratering depends on kinetic energy transfer:

$$\text{↳ } E = \frac{1}{2} m v_i^2$$

> Crater formation has 3 stages:

① Melting and Vaporization

↳ The surface melts and partially vaporized if $v_i > 12 \text{ km/s}$

↳ Beyond this, the mass of the melt is:

$$\text{↳ } M_m = M_p \cdot 0.25 \frac{v_i^2}{E_m} \sin \theta$$

↳ After milliseconds, melting is over, and energy moves as a shockwave

② Compression and Shockwave

↳ The pressure in the shockwave can be approximated by:

$$\text{↳ } P = P_0 \left(\frac{a}{r} \right)^3$$

↳ The key effect is that rocks at different distances see different pressures

↳ Shatter cones form in the bedrock under an impact crater

③ Excavation and Modification

↳ Material is driven along streamlines, pushing material upward, creating the crater rim

↳ Overturning happens when there is not enough energy to eject material

↳ Inverted stratigraphy

↳ Large, heavy particles move little, small, light move far → ejecta curtain

↳ Two crater stages are made:

④ Transient water

$$D_{tc} = 1.161 \left(\frac{P_p}{P_t} \right)^{1/3} L^{0.78} v_i^{0.04} g^{-0.22} \sin^{\frac{1}{2}} \theta$$

② Final crater

$$D = 1.17 \frac{D_{tc}^{1.13}}{D_{sc}^{0.13}}$$

!

> Secondary hazards include fireball scorching, pressure wounding / fatality, and hurricane force winds

> The transient crater wall can collapse, causing a 60% increase in D

> The amount of impacts follows a power law: $N(>D) = 37 D^{-2.7}$

> A planetary surface accumulates craters over time, and thus the number of craters per surface area is an indication for surface age

↳ Also: earlier in the SS, more and larger impacts

LECTURE 4: PLANETOIDS

- > Asteroids provide information on planet formation, can represent danger, help understand exoplanetary systems, and could be used for resources
- > A **planetoid** is an astronomical object in orbit of the Sun which is not a planet or a comet
 - ↳ planet which has not cleared its orbit (IAU definition)

Asteroids

- > Material in the disk around the Sun condenses as it cools down
 - ↳ Since there are multiple materials, there are different condensation temperatures
 - ↳ From the condensates planets and asteroids formed (gravity)
 - ↳ Some asteroids have not changed much since, and can tell us the age of the SS and composition at begin-of-life of the asteroid
 - ↳ Others did heat up or differentiated, which can explain planetary dynamics
 - ↳ We use dating and classification to reconstruct the SS history
- > Asteroids can easily be separated from background stars given long exposure
- > Classification is done based on their reflectance spectra representing composition
 - ↳ Surface

① C	primitive
② S	stony
③ D and P	more primitive
④ M	metallic
⑤ V	vesta

- ↳ S-type dominate in the inner region of the Main Asteroid Belt, M-type in central, and C-type in outer
- ↳ Shows that temperature decreases with distance from the Sun
- ↳ NEO has all classes, thus are fed by MAB
- > Dating is done using isotopes, which can be unstable
 - ↳ Condensation trapped the isotopes, and "paused" the decay since there is no interaction with an environment
 - ↳ Finding the amount of decay can result in the age of the asteroid

- > Decay : ① α : He₂ particle
- ② β : $n \rightarrow p + e^-$ (β^+ : $p \rightarrow n + \beta^+$) $\beta \approx$ electron, $\beta^+ \approx$ positron

> Isotope decay converts a parent isotope into a daughter isotope

$$\text{4 } N_p(t) = e^{-(t-t_0)/\tau_m} N_p(t_0) \quad \text{4 } t_{1/2} = \ln(2) \tau_m \quad \text{4 } \lambda = \tau_m^{-1}$$

$$\text{4 } N_d(t) = N_d(t_0) + (N_p(t_0) - N_p(t))$$

$$\text{4 } N_d(t) = N_d(t_0) + (e^{-(t-t_0)/\tau_m} - 1) N_p(t)$$

4 We measure $N_d(t)$ and $N_p(t)$, and know τ_m , but want $(t-t_0)$ and $N_d(t_0)$

4 Thus, 2 samples are needed from the same asteroid

4 However, isotopes are not distributed homogeneously, thus we need to normalize using a stable isotope

$$\text{4 } \frac{N_d(t)}{N_s} = \frac{N_d(t_0)}{N_s} + (e^{-(t-t_0)/\tau_m} - 1) \frac{N_p(t)}{N_s}$$

4 Since we measure two $\frac{N_d(t)}{N_s}$ and $\frac{N_p(t)}{N_s}$, regression results in $\frac{N_d(t_0)}{N_s}$ and $(t-t_0)$

Types

> The MAB is between Mars and Jupiter

4 The distribution of periods show resonance gaps known as **Kirkwood gaps**

> Ceres is the largest MAB asteroid, the only one rounded by its own gravity

> Dawn: ① Vesta : ② Craters

② Different minerals using VIR

② Ceres : ② Water ice layer under crust

④ Salt crust due to evaporation

} Very different

4 Vesta closer to terrestrial planets, Ceres possibly formed further away

> **Hildas** are at 3:2 resonance with Jupiter in an elliptic orbit in a triangular stable configuration

> **Trojans** are in L4 or L5 of a planet (Jupiter, Uranus, Neptune, Mars, Earth)

> **NEA** have a short lifetime due to ejection or collision

> OSIRIS-REX sampled Bennu, showing a cohesion-less surface, and materials essential to life

> Shape can be determined of a rotating asteroid by its light curve

4 Affected by albedo (not constant) and rotation axis alignment

> A body is spherical for a radius larger than:

$$\text{4 } R_{\min} = \sqrt{\frac{2S}{\pi G \rho^2}}$$

> The size distribution can be approximated using a power law:

$$\text{u } N(R) dR = \frac{N_0}{R_0} \left(\frac{R}{R_0} \right)^{-\gamma} dR \quad \gamma = 3.5 \text{ from theory in NEO and HAB}$$

> Bodies can collide, potentially leading to erosion or dispersion

> TNOs are classical Kuiper belt objects or scattered disk objects

> Centaurs are between Jupiter and Neptune, thought to have been part of KB earlier

> The Oort Cloud is composed of icy planetesimals

LECTURE 5: OBSERVING PLANETS

- > EM from objects can be detected by:
 - ① Photometry
 - ② Imaging
 - ③ Spectroscopy
 - ④ Polarimetry

Light - Matter Interactions

- > Interactions:
 - ① Absorption
 - ② Emission
 - ③ Refraction
 - ④ Reflection
 - ⑤ Scattering
 - ⑥ Fluorescence
 - ⑦ Polarisation

> The **magnitude** is a measure for the brightness of objects

↳ lower \rightarrow brighter, higher \rightarrow dimmer

↳ The **apparent magnitude** is the brightness as seen from Earth

$$\text{↳ } m_i - m_{\text{ref}} = -2.5 \log \left(\frac{F_i}{F_{\text{ref}}} \right)$$

↳ The **absolute magnitude** is the brightness at 10 parsec from Earth

$$\text{↳ } m - M = 5 \log_{10} (d) - 5$$

> **Albedo** is a measure for the reflectivity

$$\text{↳ } A_v = \frac{\text{reflected + scattered}}{\text{incident}} \quad \text{↳ } Ab = \int_{\lambda_1}^{\lambda_2} A_v d\lambda$$

> The **equilibrium temperature** is given by

$$\text{↳ } T_{\text{eq}} = \left(\frac{1 - Ab}{4 \varepsilon_{\text{SB}} \frac{L_0}{4 \pi r_p^2}} \right)^{1/4}$$

> Reflection can be split:

- ① Specular (perfect flat)
- ② Diffuse (due to roughness)

> The **phase angle** is the angle Sun - Target - Observer

↳ The spectral slope increases with phase angle \rightarrow **phase reddening**

> Any reflection induces an increase of linear polarization

> The **reflectance spectrum** \Rightarrow the convolution of the reflected Solar spectrum with the surface thermal effects

> Electrons sit in discrete energy states

$$\Delta E = E_1 - E_0 \quad E = hf = h\frac{c}{\lambda}$$

- > Interactions depend on phase, and changes the width of spectral features
- > Absorption and transmission follow the Beer-Lambert law

$$T = \frac{I}{I_0} = e^{-\alpha n L} \quad N = n L$$

Observatories

- > Observation performance factors:
 - ① Aperture
 - ② Focal length

- > The angular resolution is given by

$$R_{\text{angular}} = 1.22 \frac{\lambda}{D}$$

- > A low F ratio has more light and a wider view

$$F = \frac{f}{D}$$

- > The spectral resolution is

$$R = \frac{\lambda}{\Delta \lambda}$$

- > Filters can be used for specific wavelengths, enhancing contrast, brightness, ...

- > Limitations:
 - ① Observability
 - ② Angular resolution
 - ③ Light pollution
 - ④ Artificial satellites
 - ⑤ Atmosphere
 - ⑥ Cultural
 - ⑦ Earthquakes

- > Solutions:
 - ① Location
 - ② Correcting
 - ③ Space

high, dry, dark
adaptive optics

Spacecraft

much similar stuff as before :-)

- > Best images are taken up close
- > Many constraints, but better / more observations

In-Situ Explorers

- > Even more restrictions, but allows interaction with the environment
- > Types:
 - ① Fixed
 - ② Mobile

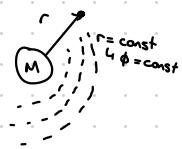
> Landing site needs to be carefully selected

Laboratory Planetary Science

- > Used to analyze samples
- > Testing and sampling of Earth-based analogue locations
- > Lab simulations by artificially creating analogues
- > Simpler, cheaper, available
- ↳ Used to test before space

LECTURE 6: PLANETARY INTERIORS

- > SS planets differ (size, density, core size, liquid core)
- ↳ Interiors of ice giants are poorly understood (common: 3 layer)
- > we already have some information through samples and orbiters
- > Perseverance made samples ready for pickup to be studied on Earth
- > we do not have deep Earth rocks, only meteorite analogues
- > Surface provides clues on interior (many craters → not much happening)
- ↳ Volcanism is driven by interior processes and thus also provides information


Seismology

- > From seismic activity on Earth, we know they originate from plate tectonic
- > Propagation of seismic waves has shown 3 types:
 - ① Pressure waves
 - ② Shear waves
 - ③ Surface waves
- ↳ $\rho \frac{Dv}{Dt} = \nabla \cdot \vec{\sigma}$
- ↳ Seismic waves follow Snell's law, experiencing reflection and refraction, and travel in curved paths
- ↳ Again a critical angle exists at which the refracted wave travels at the surface boundary
- ↳ Wave velocities:
$$v_p = \sqrt{(\kappa + \frac{4}{3}\mu)/\rho}$$
$$v_s = \sqrt{\mu/\rho}$$
$$v_{\text{Rayleigh}} = v_s \cdot \frac{0.862 + 1.14v}{1 + v}$$
- ↳ Relation between speeds and properties allow for interior models
- ↳ For an event, there will be the direct, reflected, refracted, and head waves
- ↳ For some distance further away from the event, the head wave will arrive before the direct wave
- ↳ S-waves do not propagate in liquids, which can be used to detect the presence of a liquid core
- ↳ When P-waves hit a boundary, they refract, also making a P-wave shadow zone, allowing the detection of an inner solid core
- ↳ From seismic activity, the Earth's interior could be divided into layers either based on composition or on mechanical properties

- From seismic tomography we know the Earth is not 1D either
- > Moon seismic events are driven by tides
- 2 types of events:
 - ① Shallow
 - ② Deep
- We know:
 - ① Small liquid core
 - ② Partial melt above the core
 - ③ Partially solid core from thermodynamics
- The core is relatively small compared to Earth (0.14R vs 0.5R), supporting impact theory
- > Mars:
 - ① Liquid core
 - ② Solid core likely
- > On icy moons, the ice/ocean interface generates many extra reflections

Gravity

- > The gravitational potential of a point mass is

$$\text{u } \phi = -\frac{GM}{r} \quad ?$$
- > For a given ϕ , there are equipotential surfaces
- > However, bodies are not point masses or spheres, thus:

$$\text{u } \phi = -G \int \frac{f}{r} dv$$
- > Equipotential surfaces are not necessarily spheres anymore
- > The gravity field thus tells us about the mass distribution of the body
- > Outside the body $\nabla^2 \phi = 0$, and we can use spherical harmonics

$$\text{u } \phi = -\frac{GM}{r} \sum_{l=0}^{\infty} \left(\frac{R}{r}\right)^l \sum_{m=0}^l P_{l,m}(\cos\theta) [C_{l,m} \cos(m\phi) + S_{l,m} \sin(m\phi)]$$
- > From a distribution a ϕ can be found; the inverse is ill-posed
- > From $l=0$, the density (average) can be found
- > For $(l, m) = (2, 0)$: $\phi = -\frac{GM}{r} - \frac{GMR^2}{r^2} C_{2,0} \left(\frac{3}{2} \cos^2 \theta - \frac{1}{2}\right)$, and is related to the flattening of the body
- > Spin causes a deformation, causing a degree 2 gravity field
- > The Darwin-Radau approximation relates J_2 to $M \omega^2$, which can give information about a varying density interior

- > Isostasy and topography affect the gravity, and they hide the other effect
- > The Moon and Mars have higher correlation between gravity and topography, indicating low internal activity

Time

- > Gravity changes over time, e.g. due to:
 - ① Mass transport
 - ② Tidal deformations

Magnetism

- > Earth has a dipole magnetic field tilted w.r.t. its rotational axis, caused by convection of iron organized by rotation in the core

$$\text{④ } \nabla \times \mathbf{B} = \mu \mathbf{J}$$

- > In giant planets, the dynamo is the result of convection of metallic hydrogen
- > Mars and the Moon have no dipole magnetic fields, but data suggests they did have dipoles in the past
- > Bodies can have an induced magnetic field when we have a conductor experiencing a changing magnetic field
 - ④ This can be used to detect oceans

LECTURE 7: PLANETARY VOLCANISM

Earth

- > Volcanoes typically lie on plate boundaries
- > Plate motion determined geologically and geodetically closely agree, despite the wildly different time scales
- > Earthquakes can be discriminated by source depth (shallow - intermediate - deep)
- > Clean sea floor bathymetry reveals that hot mantle material wells up at mid-ocean ridges → **underwater cracks**
 - ↳ Upwelling decompressed basalt magmas and hydrothermal vents can be observed, indicating the plates are being pulled apart
- ① ↳ Magma rises from the cracks, cools, and pushes older rock away, creating the oceanic lithosphere
 - ↳ Subduction happens as it is pushed under and is heavier
 - ↳ OL - OL subduction causes a trench
- ② ↳ Subduction causes volcanism (OC/OC convergent plates)
- ③ > Hot spots are "leaks" within plates causing rising magma, and the 3rd type of volcanism on Earth
 - ↳ 3 types

Moon

- > Only partial mantle melting created volcanic rocks
- > Smooth maria are due to flooding by outpouring lava
 - ↳ Closed up due to low viscosity (flow back)
- > There is some evidence of explosive volcanism due to small droplets of glass

Mercury

- > Some smooth areas are believed to be due to volcanic activity from global contracting due to cooling

Venus

- > Basaltic eruptions flooding large areas
- > Still active in some spots
- > Many coronae, hotspots that became inactive before formation of a shield volcano

> Has pancake domes, large flat domes with steep sides, and lava rivers

Mars

> Features volcanoes larger than Earth

Io

> Most volcanically active in SS, through plumes and lava flows

> Source is tidal friction: internal strain and frictional heating driven

Triton

> Low temperature volcanism: cryovolcanism (water is quite rocky)

> Energy from boiling nitrogen

LECTURE 8: PLANETARY INTERIORS

- > Isolated planets in thermal equilibrium would have a spherical shape, but we have rotation, tides, convection, ...
- ↳ These all cause deformities, giving rise to time changing gravitational coeffs.
 - ↳ $C_{l,m} = C_{l,m}(t)$ $S_{l,m} = S_{l,m}(t)$

Tides

- > Because planets are not points, and thus gravity pulls harder to a closer point
- ↳ The potential can be computed for any point if we know the distance
 - ↳ $\phi^T = -\frac{GM^*}{r}$
- ↳ Expressing $\frac{1}{r}$ as a function of the radial distance of the point and the center, body distance, and angle:
 - ↳ $\phi^T = -\frac{GM^*}{d^*(e)} \sum_{l=0}^{\infty} \left(\frac{r}{d^*(e)}\right)^l P_l(\cos(\psi(e)))$; $d^*(e) = f(a^*, e^*, v^*)$; $\psi(e) = f(G, \phi^*, l^*, \omega^*, v^*)$
- ↳ Looking at tidal curves, we see that many periods are involved, which are related to changes in orbital elements
- ↳ Considering a static secondary body and a rotating primary, the tide period is half a day
- ↳ If other way around, period is half of orbital period of secondary
- ↳ Both happen, and the period is half a lunar day for Earth-Moon
- ↳ Because the Moon's orbit is inclined, another diurnal component is present
- ↳ Orbital elements also change over time, causing long periods
- ↳ We thus have 3 types:
 - ① Semi-diurnal
 - ② Diurnal
 - ③ Long period
- > Since the Moon always shows the same face, it has flowed to be an ellipsoid
- ↳ In a slightly eccentric orbit, bulge changes slightly every orbit
- > Tidal forces cause deformations, the amounts depend on internal structure, which is captured by Love numbers
- > To compute the tidal response, we solve cons. mass, momentum, Poisson, thermo.

> How a planet deforms is a matter of time scale

Moment of Inertia

- > J_2 can be measured by spacecraft orbit tracking, which can be used to determine the MoI
- > Static tide only depends on density, viscoelastic is sensitive to the mechanical properties
- ↳ Measuring deformations can tell us about these properties

Rotational Dynamics

- > Perturbations affect the rotational state of a planet
- > Subsurface oceans cause more libration because the shell is decoupled from the interior
- > Typically use conservation of angular momentum
 - ↳ $\frac{dL'}{dt} = T'$ ↳ $L' = I' \cdot \omega$
- ↳ Mass redistribution changes revolutionary period

Orbital Perturbations

- > A third body causes extra perturbations
- ↳ Combined with non-spherical effects, interesting things arise
- > Mean motion resonances can push the eccentricity, making orbits chaotic
- > For viscoelastic bodies, there is some phase lag between tidal force and deformation
 - ↳ $\sin \delta = Q^{-1}$ Q quality factor, related to heat dissipation
- ↳ Gas giants do not dissipate much heat
- ↳ Tidal heating:
 - ↳ $\dot{E} = \frac{21}{2} \frac{(nR)^5}{G} \frac{k_2}{Q} e^2$
- ↳ Affects orbital evolution
- ↳ If a planet spins faster than a moon orbits, a AU is generated and a torque in the primary
- ↳ If the planet spins slower, the planet spins up, and the moon falls toward it

- > we saw that Io is very active due to tidal heating
- ↳ The energy is coming from the changing orbital energy
- ↳ causes a decrease in semi-major axis and eccentricity
- ↳ $e \neq 0$ currently, because MMR increases it
- > Orbital and interior evolution are coupled

LECTURE 9: ICY MOONS

Ice and Oceans in Solar System

- > Close to the center of the accretion disk it was hot, and metals condense with no ice
- ↳ Further away it is cold and ices condensate
- ↳ Ices form on dust grains via **accretion** from the gas or **evaporation** or **sublimation**

$$\text{R}_{\text{acc}} = n_{\text{gas}} v_{\text{gas}} \propto n_{\text{dust}} S$$

$$R_{\text{evap}} = n_{\text{ice}} v e^{-(E_b/kT)}$$

- > **Snowlines** are the transition between gas and ice

$$\text{R}_{\text{acc}} = R_{\text{evap}}$$

- > Besides the 3 main phases, water exists in many types
- ↳ Different modes within types absorb light at different frequencies
- > The presence of an ocean under an icy crust can be determined by:

① Gravity and Tides

- ↳ The M_{ol} is different for a differentiated body

- ↳ The shell and interior are decoupled, so the response of the shell to external forces gives information on subsurface oceans

② Magnetic Field

- ↳ A salty ocean can act as a conducting material, which can induce a magnetic field (Europa is an example)

③ Terrain

- ↳ Floating icebergs look like chaos terrain, and with similarities to Antarctica a subsurface ocean can be deduced

- ↳ Gravity anomalies can be explained by subsurface oceans

④ Geysers

- ↳ can expel water outwards

Saturn

> Shepherd moons create gaps in the ring system

> Enceladus has an ocean with plumes

↳ Observed temperature does not match predicted, and can not be explained by tidal dissipation and radiogenic heating in the core

↳ The core is porous, and interacts with the ocean :

- ① Water influx into core
- ② Heating creates plumes interacting with rocks
- ③ Hotspots are created at seafloor
- ④ Heat and rock are transported
- ⑤ Localized heating thins the shell
- ⑥ Plumes erupt

↳ Cassini: measured particles and gases in plumes, showing 3 types of material

- ① Water ice
- ② Organic material
- ③ Salty material

↳ Imaging and spectroscopy together with greybody radiation are used to determine surface temperature and composition

Jupiter

> Hubble observed H and O emissions from Europa

↳ Galileo data coincided magnetic field changes

> Io is a lava world rich in SO_2 ice

> Europa, Ganymede, Callisto all icy moons with different terrains

> JWST saw CO_2 present on the surface from a subsurface ocean

> JUICE and Europa Clipper investigate this system

Formation of Moons

> Around large planets also an accretion disk formed, forming natural satellites

↳ These can migrate and be lost in the planet

↳ Frozen configuration once gas dissipated

> 3 of Jupiters moons are icy, explained by Jovian snowline

> Saturns rings are ice-rich, indicating that an outer moon likely spiralled in and fractured (possibly into some of current smaller moons)

LECTURE 10: OUTER PLANETS & MOONS

Giant Planets

- > Terrestrial planets: ① Iron/nickel core
 - ② Rock (silicates)
- > Giant planets: ① Rock
 - ② water
 - ③ Hydrogen (metallic - Molecular gas)
- ↳ Further away, larger
- ↳ Cores all roughly same size $\sim 10 M_{\oplus}$
- ↳ Gas captured from solar nebula because the cores were large enough
- > All have strong magnetic fields due to rapid rotation and conductive interiors
- ↳ In Uranus and Neptune, the rotation and magnetic axes are very unaligned
- > None have a solid surface, the atmospheres just get warmer and denser

① Jupiter

- > Relatively small core $\sim 10 M_{\oplus}$
- ↳ Inner rocky (iron + outer ice-rich, or homogeneous)
- > Magnetic field from EM currents in metallic hydrogen region
- > Internal heat from gravitational contraction / accretion in the past

② Saturn

- > Internal models similar as for Jupiter
- > Lower P and T than Jupiter
- ↳ Still large enough P for metallic hydrogen
- > Radiates more energy than received sunlight from gravitational energy of falling the rain

③ Uranus and Neptune

- > Similar structures
- > Not big enough (not enough P) for metallic hydrogen
- > Can have water-ammonia slush

- > High density core
- > Neptune smaller but heavier
- > Mantle 80% of mass, icy composition
- > Internal magnetic fields indicate conductive and convective interiors
- > Uranus is tilted a lot compared to the other planets

Icy Moons

- > 13 bodies in SS have oceans
- > For life: ① Energy
- ② Water
- ③ Nutrients
- ④ Time

tidal dissipation
oceans
from volcanism?

① Titan

- > Titan has a methane cycle analogue to Earth's water cycle
- > Cass.: images revealed hydrocarbon lakes

② Enceladus

- > Small but round \rightarrow low viscosity interior
- > Exhibits plumes

③ Europa

- > More water than Earth (a lot smaller)
- > Cycloides and the combination of the 2 fault types indicate sub surface oceans
- > Tidal induced convective motions are hinted at by surface features
- > 2 models: ① Thin crust, convecting ocean
- ② Thick convecting crust, thin ocean
- > Induced magnetic field reveals subsurface ocean

LECTURE 11: SURFACE GEOLOGY AND PROCESSES

- > We use **geology** to understand how planets are shaped by processes we recognize from Earth
- ↳ Evolution can inform us about habitability
- > Surfaces are shaped by : ① Internal processes ② External processes
 - volcanism, tectonics, isostasy
 - glacial, fluvial, aeolian, physical/chemical
- ↳ Surface is the sum of the two
- > Mars is the most Earth-like planet (and can be used as a case study)
- > Mineralogy : chemistry, related to formation
- > Petrology : what happened since

Internal Processes

- > Driven by internal heat, key driver for geologic evolution
- ↳ Expressed as : ① Magmatism / Volcanism
 - ② Diastrophism (tectonism)
- ↳ Increase topography and rock formation
- ① Martian volcano peaks are visible from Earth, peak above the clouds
- ↳ Mariner 9 discovered calderas (summit depressions), like volcanoes
- ↳ Columnar jointing is a pattern of fractures in rocks creating hexagonal columns, occurs when lava encounters a cooler surface
- ↳ Explosive volcanism (bombs) deform horizontal layers, and were imaged by Spirit
- ↳ Also sorting at Home Plate of grains, indicating hydrovolcanism
- ↳ Porous (vesicular) basalts in craters and igneous rocks in a fluvial deposit are more indications

External Processes

- > Originate from within an atmosphere, driven by energy from the Sun
- ↳ Dependent on : ① Weather **short term**
② Climate **long term**
- ↳ Wears down the variations in relief (**gradation**)
- ↳ Endogenic build relief, exogenic levels the surface

> Climate variations are driven by orbital parameters

① Glaciers are formed by self-compaction of snow and gravity driven flows are controlled by internal deformation

↳ Create glacial valleys through erosion, and transports sediments

② Permafrost are extensive water-ice deposits in the subsurface, protected from sublimation by regolith

③ Volcanoes and ice can interact (glaciovolcanism) and can thus be used to infer a surface where both endo- and exogenic processes coexisted

④ Rootless cones form by explosive interactions of lava flows with surface water or permafrost

⑤ Wind is a process from larger atmospheric circulation interacting with granular materials at the surface

↳ Many objects do not have the ability for this to happen, but all in SS with an atmosphere do

↳ Aeolian landscapes require windspeeds above a threshold

↳ The boundary layer is smaller as u decreases (and thus flow closer to the surface), making threshold vary with particle size

↳ Wind induced forces need to exceed the resistance

$$F_L = C_L \cdot d^2 \cdot \rho \cdot u^2$$

$$F_D = C_D \cdot d^3 \cdot \rho \cdot u^2$$

$$F_{adh} = C_{adh} \cdot d$$

$$F_n = \pi \cdot d^3 \cdot g \cdot \rho_{He} / 16$$

$$\left. \begin{array}{l} F_n + F_{adh} \\ F_L + F_D \end{array} \right\} \rho u_{eff}^2 = \frac{F_n + F_{adh}}{F_L + F_D}$$

$$\rho = \rho \cdot \frac{m}{k \cdot T}$$

↳ The threshold condition is then found as:

$$\rho \cdot u_{eff}^2 = \frac{((\pi/16) \cdot g \cdot \rho_{He} \cdot d^3 + C_{adh} \cdot d)}{C_L \cdot d^2 + C_D \cdot d^3}$$

↳ The threshold is V-shaped for varying d

↳ Smaller d : adhesion too strong

↳ Larger d : weight too much

↳ Detachment (roll) happens before entrainment, and the threshold is lowered because of motion and impacting

↳ Grain transport method depends on grain size: ① Creep
② Suspension

③ Saltation

- 4 Planetary wind tunnels allow P, T, and composition to be changed to match the surface environment
- ⑥ Water is constrained to specific T-P conditions, and features thus indicate changing conditions
- 4 Domains:
 - ① Rivers (fluvial)
 - ② Lakes (lacustrine)
 - ③ Oceans (marine)
- 4 Rainfall delivers water to the surface, and overland flow can occur when the infiltration rate is lower
 - u This can coalesce to streams and downslope channels for porous substrates, which can be deepened by incision and erosion *this is a positive feedback loop*
- 4 Either runoff networks or seepage networks can be created
- 4 Alluvial fans form at the end of fluvial channels from sedimentary deposit in dry conditions
- 4 Deltas are fans where the channels terminate in a lake
- ⑦ Gravity moving material is **mass wasting**
- 4 Downslope movement of unconsolidated materials on sloping terrain due to gravity
- ⑧ Physical weathering break rocks into sediments
- 4 Primarily due to impacts
- ⑨ Chemical weathering happens due to liquid water altering minerals comprising rocks
- 4 Can tell us conditions, properties, and amount of water on Mars
 - > The constant change of rocks by exo- and endogenic processes is summarized in the rock cycle
- 4 Active when:
 - ① Interior is hot enough to keep the mantle moving
 - ② Surface conditions support liquids and ice cycles

LECTURE 12: SURFACE EVOLUTION & HABITABILITY

- > Early observations of global mapping and reconnaissance were limited by instruments and human eyes
- > Mapping involves synthesis of instrument data, imagery, and interpretation
- > Time is critical for planetary evolution
- ↳ Techniques exist to derive relative and absolute timelines
- > We can apply Earth techniques to understand the sequence of processes on planetary bodies
- ↳ Stratigraphy is one of these, and has the following principles:

- ① Superposition
- ② Original horizontality
- ③ Cross-cutting relationships
- ④ Lateral continuity

- ↳ Initially provide a relative dating of the surface using crater-size frequency distributions $N(>D) = 370^{-2.3}$
- > Valley networks suggest pluvial or fluvial activity
- ↳ on Mars, indicates that climate at one point differed from what it is now
- > Global stratigraphy is constructed by:
 - ① division into units with similar properties
 - ② ordering using stratigraphic principles
 - ③ Assigning ages (rel and abs) using statistics
 - ④ Compiling into a GIS based global map
- ↳ 3 regions have been studied from orbit and ground

① Gusev Crater

- > From orbit:
 - ① Impact crater size, age, sediment age (crater counting)
 - ② Thought to be ancient lake bed
 - ③ Valley enters has flat hills, thought to be deltas
 - ④ + main surface units
 - ⑤ Sedimentary processes or volcanic processes
- ↳ From ground:
 - ① Volcanic rocks, but no flow, SO source: fissure eruptions
 - ② Aeolian features (recent)
 - ③ Sulfate rich soil → hydrothermally active
 - ④ Nothing pointing to lake setting

② Meridiani: Planum

- > Orbit:
 - ① Layered sedimentary unit in closed basin setting
 - ② Basaltic sandy surface, excavated by erosion

- ⑤ Crater hard to date due to erosion and infilling
- ⑥ Suggestion to aqueous environment

- 4 Ground: ① Aeolian and rock-water interaction structures
- ② Hematite spherules indicate formation in groundwater

③ Gale Crater

- > Orbit: ① 7 main units
- ② Central peak from cratering uplift process, covered by layers
- ③ Dating done

- 4 Ground: ① Sandstones from delta deposits entering a lake setting
- ② Gravel from rim was deposited around the peak
- ③ Transition to sandy deposits mark lake boundary
- ④ Many sedimentary layers exposed due to aeolian erosion

- > Mars timeline has 3 main periods:

① Noachian

- > No units older are found at the surface
- > Large basins form (perhaps from large impact)
- > High erosion rates
- > Formation of clay-mineral indicates role of water

② Hesperian

- > Larger biodiversity due to reduced impacts and lower erosion rates
- > Widespread volcanism
- > Planetary cooling (seen from wrinkly ridges)
- > Formation of catastrophic outflow channels from massive floods
- > Change of environmental conditions seen by decline of valley networks

③ Amazonian

- > Larger role of wind and ice
- > Hematite formation
- > Meteorites and lava flows indicate volcanism nearly to present
- > Gullies and debris flows most common fluvial features

| > Aedian processes dominant

> Triaging composition and origins of rocks is done using mineral content and abundance and context of associations

↳ Diagnostic mineral properties constrain formation conditions

↳ Requires observation of grains within rocks shape, color, ...

↳ Geochemical properties can then be quantified

LECTURE 13: HABITABILITY, ORIGINS OF LIFE & LIFE DETECTION

What is Life

- > From astrobiology: an open chemical system capable of self-reproduction
- > Living organism should be capable of:
 - ① Homeostasis
 - ② Organization
 - ③ Metabolism
 - ④ Growth
 - ⑤ Adaptation
 - ⑥ Response to stimuli
 - ⑦ Reproduction

Chemistry of Life

- > The tree of life is a pattern of relationship that utilizes similarity in genetic coding
- > Focused on r-RNA as it is strongly conserved
- > 3 main groups:
 - ① Bacteria: single celled, no organelles and organized nucleus
 - ② Archae: similar, but distinct in cell membrane and genetic coding
 - ③ Eukaryota: cells with nucleus, membrane bound organelles
- > LUCA is the last common ancestor, population of cells adapted to the early Earth
- > Elements are formed through nucleosynthesis in a star
- > Life as we know is based on carbon chemistry because it can make complex molecules:
 - ① 4 valence electrons
 - ② Double bonds possible
 - ③ Lysine
 - ④ Proteins
- > Nucleotide: nitrogenous base, sugar, phosphate group
- > DNA are chains of up to 10^8 nucleotides, involving 10^3 C atoms
- > Huge carbon molecules are stable, but remain chemically active and can be broken up
- > Amino acids can be left or right handed (chirality)
- > On Earth, life is left handed
- > Enzymes: proteins, essential catalysts, lock and key model, chains of amino acids
- > Silicon based life can exist, but low water solubility and unstable in water are problems
- > Amino acids contain an amino and carboxylic acid groups, the latter causing the chemical reaction

↳ 20 exist on Earth

↳ Combined form proteins, both are building blocks of life

↳ Formation on Earth happened due to a simple atmosphere with lots of energy from lightning

↳ In space 52 AA have been identified, also some right handed

↳ Formation from simple ice with radiation

Importance of Water

> Besides the building block, we need a liquid solvent

↳ Gaseous has too low density, solid would prevent movement

↳ Water advantages: ① Liquid over wide temperature range
② Large heat capacity \rightarrow chemical reactions take place without changing T \rightarrow stable
③ Large dipole moment \rightarrow increases solubility due to possibility of H-bonds
④ Can react (hydrolysis)

> Earth oceans were formed: ① Wet (from formation)

② Dry: ② Brought by asteroids

③ Brought by comets

↳ ② can be determined by comparing the heavy water ratio in meteorites and oceans

↳ ① from water attached to grains and combining them

> **Habitable zone**: region around a star where liquid water can exist on the surface of a planet

↳ For a given atmospheric pressure, the zone is a temperature range

$$4 T_p = T_\star (1 - A_p)^{1/4} \sqrt{R_\star / 2 \sigma_p} ; 273 \leq T_p \leq 373 \text{ for liquid water}$$

↳ However, this neglects the planet's atmosphere e.g. greenhouse effect

↳ Also, subsurface habitability is a possibility e.g. in oceans closer to core

> To look for life in space: ① Changes

② Elements

③ Molecular structures

④ Biomaterial

↳ By use of: ① Mass spectrometer

② IR spectrometer

③ Immunoassay techniques

④ Laser imager

⑤ DNA sequencer

LECTURE 14: MAGNETISM

- > Planetary magnetospheres form the largest structure in the SS
- > Kepler thought planets had magnetism, and that was their driving force for motion
- > Faraday's law of induction: an electric current is created in a wire or electric conductor that moves through a magnetic field
- > The Maxwell-Faraday equation
 - ↳ $\nabla \times E = -\frac{\partial B}{\partial t}$ circulation of E around C = rate of change of B through S
 - ↳ $\oint_C E \cdot d\vec{s} = -\frac{\partial}{\partial t} \int_S \vec{B} \cdot \vec{n} da$
- ↳ Change in magnetic flux ($\int B da$) creates an electrical current
- > The Lorentz force
 - ↳ $F = q(E + v \times B)$
- ↳ A force can only come from an electric field or a magnetic field acting on moving charges
- ↳ The flux rule is valid for any method of changing flux circuit moves vs changing field

Instruments

- > Atoms and ions emit radiation which can be seen from Earth
- > The magnetic field is a vector field \rightarrow 3 measured directions required
- > A spacecraft creates a magnetic field from its electronics, thus measurements need to take this into account e.g. a boom or rotation
- > Dynamic range is quite large \rightarrow trade accuracy vs widespread information
- \hookrightarrow Sampling rate should be high for measurement of fast changing events

① Coil

- > Simplest form of magnetometer
- > Measures a fluctuating magnetic field

② Fluxgate Magnetometer

- > Two coils around a core, one with AC
- > High dynamic range

> Cassini: ① Fluxgate
② Ionized gas

> Galileo: 2 sets on a beam, use of spin to remove artificial field

> JUICE: fluxgates and scalar

Rocky Bodies

> For most bodies, magnetic axis is roughly aligned with rotation axis, but not all

> Bodies do not have a permanent magnet with sufficient strength, because of decay, temperature, and known composition

↳ In Earth, Curie temperature is reached below 100 km, and thus only the outer shell can have permanent magnetism

↳ Besides, ferromagnetic materials are not abundant enough, and magnetic fields gradually dissipate away

> For a dynamo to work, the current would have to pass through the entire core

↳ Convection is too slow to explain the field

↳ Also magnetic reversals found in ocean floors need to be explained

↳ Due to rotation (Coriolis), aligns loops of electric current, which create the magnetic field

↳ Causes the coupling between rotation/magnetic axes

> In terrestrial planets, there is enough iron for the dynamo

> Jupiter and Saturn have metallic hydrogen and He

> Uranus and Neptune have other molecules (H_2O , CH_4 , NH_3 , H_2S)

> Mercury's low field is likely due to slow rotation

> Mars is not a dipole: field is remnant in crust no moving liquid inside

Sun and Solar Wind

> Corona: outermost part of solar atmosphere

↳ Heating and structure due to magnetic fields

> Solar magnetic field mainly from movement in radiation zone

> The **termination shock** is the region where solar wind is slowed down below $M=1$

> **Heliopause**: merging of solar wind with interstellar wind

> Solar wind travels in a spiral, consists of protons and electrons

> Space weather: ① UV radiation and X-rays
② CME particles
③ Cosmic-ray like particles

↳ Can disturb comms and electronics

↳ Particles are deflected due to Earth's magnetic field → magnetosphere

↳ Some enter near the poles, and get trapped $\xrightarrow{\text{expl. by Lorentz force}}$ ^{radiation belts}

Induced Magnetic Fields

> Bodies with a magnetic field will have a location where the solar wind pressure equals the magnetic field pressure, and bow shocks are created

↳ A body with an ionosphere has a similar interaction, where currents are set up, which inhibit the magnetic field from diffusing through the body

↳ When a non-conducting body is hit, the particles are absorbed, and the magnetic field is barely affected

↳ Conducting bodies generate an induced magnetic field due to the motion of the particles inducing a current, deflecting the magnetic field around the body

> Jupiter has a very large magnetosphere, and generates a co-rotating plasma disk due to the Lorentz force

↳ Io is hit from the back with the magnetic field lines, allowing transport from Io to Jupiter, creating auroras

> Jupiter induces a magnetic field in Europa, which is proof for a subsurface ocean

↳ Galileo measured a too fast changing magnetic field, indicating either a magnetic field, ionosphere, or induced magnetic field of Europa

↳ The first 2 were ruled out, and the last would be explained by a subsurface fluid layer

? The magnetic dipole potential

$$\text{↳ } V = \frac{\mu \cdot r}{r^3}$$

$$\text{↳ } \mathbf{B} = -\nabla V$$

LECTURE 15: EXOPLANETARY SYSTEMS

- > An exoplanet has negligible fusion H in stars, D in brown dwarfs
- u Planetary mass $\lesssim 0.012 M_{\odot} \approx 12 M_{\oplus}$
- u Orbit around a star
- > Stars are classified using their spectral characteristics Sun: G
- > Parallax motion: nearby stars appear at different positions with respect to distant stars as the Earth moves along its orbit
- u Parsec is defined as the distance for parallax angle $1''$
- u At 1 pc, an angular separation of $1''$ corresponds to 1 AU, which is why we use it over e.g. lightyears

Detection Methods

① Direct Imaging

- > Detect light emitted / reflected to create an image
- u After detection, confirmation that it is a planet is needed
- u Planets are extremely faint close to a bright source
- u Brightness contrast is an issue
- u Optimal for hot planets and long wavelengths
- > Coronagraphs can be used to block the incoming bright light
- > The star and planet need to be able to be resolved separately, giving a limit to the resolution **diffraction**
- u Atmospheres distort wavefronts, making conditions worse
- u Can be corrected by adaptive optics
- > To prove it is a planet, the motion is observed to assess it is in orbit of a star, and to see it is not massive the cooling track is used to link luminosity and age to mass

② Radial Velocity

- ? First indirect method, looking at the star (no photons from the planet)
- > Orbital motion of star-planet system CoM is used, from which a doppler shift is seen

↳ From Kepler's 3rd law, and $M_p \ll M_*$:

$$\textcolor{brown}{\mu} \left(\frac{P}{365.25 \text{ d}} \right)^2 = \left(\frac{a}{\text{AU}} \right)^3 \left(\frac{M_*}{M_0} \right)^{-1}$$

> The stellar radial velocity is measured from the Doppler shift

$$\textcolor{brown}{\mu} \lambda_0 - \lambda_0 = \lambda_0 \frac{\Delta v}{c}$$

↳ From that, and Kepler, the semi-major axis can be determined

$$\textcolor{brown}{\mu} K = \frac{M_p}{M_p + M_*} \left(\frac{2\pi G (M_p + M_*)}{P} \right)^{1/3} \approx \frac{M_p}{M_*} \left(\frac{2\pi G M_*}{P} \right)^{1/3}$$

↳ However, this is for inclination 0° (sin factor added, 90° = edge-on)

↳ Minimum mass is measured

↳ Eccentric orbits require numerical fitting

↳ Multiple planets require hierarchy or numerical fit

③ Astrometry

> Measuring the reflex motion of the star in the plane of the sky

↳ Determine the motion around the COM

↳ Precision from ground not good enough

↳ Gives true mass

LECTURE 16: EXOPLANETARY INSTRUMENTS & EXOMOONS

① Transits

> Star flux decreases when planet crosses in front edge-on system

$$4 \cos i < \frac{R_* + R_p}{a}$$

↳ since all i equally likely, transit probability is:

$$4 P_{\text{trans}} = \frac{R_* + R_p}{a}$$

> Transit can be used to find period, resulting in semi-major axis, giving planet radius

↳ From radius and average density, a mass estimate can be made from RV

> Periodic dimming can also be:

① Star spots (intrinsic variability)

② Grazing eclipsing binary

③ Eclipsing binary in background

↳ Need RV follow-up to confirm, also resulting in actual mass $\sin i \approx 1$

> Gravitational interactions between planets leads to variation in transit time

↳ Can be used to detect non-transiting planets or to constrain masses

② Microlensing

> Based on gravitational lensing

↳ Conserves surface brightness: magnification results in a brighter object as more light is bent towards you

> Microlensing: detect lensing event by monitoring the brightness of source stars

> A point mass lens (star) has a point called a caustic, where the mapping becomes a singularity if the bg source lies exactly behind it

↳ Results in the Einstein ring

↳ If the lens has a planet, properties change, but this is negligible except for a source in the caustic

↳ Star + planet has caustic curves, and if the source passes, it gets amplified infinitely, and planets can be detected

> Finds mass and separation

The Exoplanet Zoo

① Super-Jupiters

- ② Hot Jupiters
- ③ Super-Earths
- ④ Long period gas giants

- > we have mostly found short period planets as these are easier to detect
- ↳ planets are more common further out
- > Much data, go over slides honestly

Life Outside the Solar System

- > We need to look for biomarkers such as green, chlorophyll, ...
- ↳ Feature types: ① Surface
 - ② Atmospheric O₂ presence, although can be from photolysis of water

LECTURE 17 : PLANET & SOLAR SYSTEM FORMATION

Star Formation

- ① Molecular Cloud
- ② Prestellar core
- ③ Protostar
- ④ Protoplanetary disk
- ⑤ Planetary System

> Dark Clouds : ① $M \approx 2 M_{\odot}$
② Cold, opaque at visible
③ Dust blocking light
④ Pressure counteracts gravity

> Light passing through interstellar clouds is redder because of Rayleigh scattering

↳ Happens at a few μm \rightarrow particles are smaller than $1 \mu\text{m}$

↳ Measuring extinction gives dust mass, gas from molecular lines ratio ≈ 0.01

> Collapse of the clouds form stars, mass falls into the "massive" center

$$\text{↳ } a_c = V_0^2 / r = j^2 / r^3 \quad \text{↳ } j = rV_0 \quad \text{↳ } a_g = GM_{\star} / r^2$$

↳ The cloud has some initial angular momentum, vector perpendicular to rotation axis, parallel to it gravity wins over centrifugal \rightarrow disk formation

↳ Rotation is sped up as r decreases (cons. angular mom.)

↳ Evidence disk: SS planets roughly orbit in the same plane

> Using spectral energy distribution, the dust configuration can be found

> Temperature determines the thickness of the disk

> As material falls into the star, there will be an accretion shock leading to UV excess emission, which can be measured

> For all planets in SS, spread mass into an annulus, each having a surface density, which results in $\Sigma_{\text{MSW, gas}}$ by fitting $\min_{\text{mass}} \text{Solar nebula}$

From Dust to Pebbles

> To find out what happens to dust grains in gas in microgravity, we need experiments

- ① Drop tower
- ② Simulations

↳ we can then map the parameter space

> Collisions between dust particles are very rare, between gas and dust common

↳ There is friction between the gas and dust

$$\hookrightarrow \alpha_{\text{drag}} = -\frac{V_{\text{dust}} - V_{\text{gas}}}{T_s} \quad T_s \text{ stopping time; small grain} \rightarrow \text{small } T_s \text{, large grain} \rightarrow \text{large } T_s$$

↳ T_s proportional to surface to mass ratio, for spherical particles to radius

↳ For a particle in dust, the EddM is

$$\hookrightarrow \frac{d^2 z}{dt^2} + \Omega^2 z + \frac{1}{T_s} \frac{dz}{dt} = 0 \quad \Omega \text{ local angular velocity}$$

$$\hookrightarrow \frac{d^2 z}{dt^2} + z + \frac{1}{St} \frac{dz}{dt} = 0 \quad St = \Omega T_s, \text{ Stokes number; } \begin{array}{l} St \ll 1 : \text{dust follows gas} \\ St \approx 1 : \text{marginally coupling} \\ St \gg 1 : \text{almost ballistic} \end{array}$$

↳ Settling velocity is size dependent

> For a large particle in a sea of smaller particles, it will sweep everything in a cylinder with radius R

> Idk what this all means, read back

Pebbles to Planetesimals

> with collisions, other things than sticking can happen bouncing, fragmentation, ...

↳ Depends on : ① Composition
② Local conditions
③ Charged particles
?

> For dust, settling near midplane as it moves towards highest gas pressure and gas is in hydrostatic equilibrium

↳ Dust has no pressure support: radial drift can happen

$$\hookrightarrow V_{\text{drift}} \sim \frac{-St}{1+St^2} \left(\frac{H}{r} \right)^2 V_0 \quad \text{max for } |St| = 1 \rightarrow 1 \text{ m boulder}$$

$$\hookrightarrow T_{\text{drift}} = \frac{r}{V_{\text{drift}}}$$

> Growing into pebbles is hard because they fall into the star

↳ Beat by : ① Grow faster than drift time scale
② Grow in places without drift unstable flow \rightarrow concentrations
(radially) structured disks

↳ Planetesimals are safe from drift

Planetesimals to Planets

> 2 bodies are approaching each other with impact parameter b

↳ Far away, gravity has no real impact yet

$$j_1 = r v_B = r \frac{\Delta V}{2} \sin \theta = \frac{b \Delta V}{2} = j_2$$

At closest approach, bodies pass each other with an unknown relative velocity

$$j = R_c V_{\text{rel}} / 2$$

Conservation of angular momentum:

$$R_c V_{\text{rel}} = b \Delta V$$

> Initial energy:

$$E = m \Delta V^2 / 2$$

Closest approach:

$$E = m V_{\text{rel}}^2 / 2 - G m^2 / R_c$$

Conservation of energy:

$$\Delta V^2 / 2 = V_{\text{rel}}^2 / 2 - G m / R_c$$

Combining:

$$b^2 = R_c^2 + \frac{2 G m R_c}{\Delta V^2}$$

Collision:

$$R_c < 2 R_p$$

$$b^2 < 4 R_p^2 + \frac{8 G m R_p}{\Delta V^2} = 4 R_p^2 \left(1 + \frac{V_{\text{esc}}^2}{\Delta V^2} \right) \quad V_{\text{esc}} = \sqrt{2 G m / R_p}$$

Let:

$$\text{Gravitational focusing factor, } \sqrt{1 + \frac{V_{\text{esc}}^2}{\Delta V^2}}$$

$$\text{Effective size, } R_{\text{eff}} = R_p \sqrt{1 + V_{\text{esc}}^2 / \Delta V^2}$$

More massive bodies have more collisions as $V_{\text{esc}}^2 \propto m$

If $\Delta V \neq f(m)$, runaway growth

$$\frac{dm}{dt} = f_{\text{swarm}} \Delta V \# R_{\text{eff}}^2 \sim m^{4/3}$$

However, planetesimals start to spin resulting in oligarchic growth, and the mass reservoir is finite, making growth stop when everything in the feeding zone has been accreted

Feeding zone: annulus of width $2 R_H$

$$R_H = a \left(\frac{m}{3 M_{\odot}} \right)^{1/3} \quad \text{Hill radius}$$

↳ limit feeding zone mass is the isolation mass

$$\frac{M_{\text{iso}}}{M_*} = \left(\frac{4\pi \Sigma_0 a^3}{3^3 \mu_*} \right)^{3/2}$$

↳ After depletion of feeding zones, giant impacts happen \rightarrow terrestrial + moons

> For gas giants: ① Core accretion model
② Gravitational instability model

↳ ① Requires high core mass and low temperature

↳ Takes long

↳ ② Make a disk massive and cold enough that it collapses

↳ possible at larger distances